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1 Introduction

+ paradigm : when middleware components, such as Wireless Indoor Positioning or mo-
bility prediction, render pertinent the arrival of Lite Deployment of Best-Effort-like Mobile
Multimedia Applications. + illustration and definitions of interoparable components which
+ participate to mobility awareness : - Positioning - tracking/journalizing - mobility pre-
diction + interaction with other middleware components which proceed the continuity of
multimedia flows + summary

2 Positioning, Logging, Journalizing and Tracking

2.1 State of the art

In this section, we focus on the WiFi indoor positioning systems. Indeed, outdoor position-
ing is easely achieved with good accuracy by the Global Positioning System (GPS). On the
other hand, indoor positioning systems are currently being investigated. First, we present
an infrared-based positioning system, giving the idea of the most simple WiFi position-
ing system. Second, we describe some projects based on data collection of signal strength
measurements. Third, after exposing a new trilateration algorithm, we present several po-
sitioning systems based on trilateration. Fourth, we present a positioning system based on
the hybridation of the data collection-based and the trilateration approaches.

A trivial way to determine an approximate mobile terminal’s position is based on in-
frared sensors [?]. An infrared sensor having a very short range and a transmission capa-
bility only with line of sight, placing infrared sensors at critical points (building entrances,
point of interest, etc.) allows to punctually know the position of a mobile terminal. Another
coarse-grained positioning system is to approximate the mobile terminal’s position as being
the same as that of its access point.

In the RADAR project [1], a signal strength map is used to position the mobile ter-
minals. A database containing points with known coordinates is built. For each point in
the database, the geographical coordinates and the signal strength measured from each ac-
cess point are stored. The signal strength map is established either by measurements or by
computation following a radio wave propagation model. Positioning a mobile requires to
measure the signal strength at an unknown point. By comparing the measurement with the
ones in the database, one can deduce its position. The error median of RADAR’s accuracy
is between 2 and 3 meters.

Other projects use measurement sets to position mobile terminals. For example, statis-
tical approaches, [2] and [3], use signal strength distribution on reference points to locate
a mobile terminal. A project used the neural network approach [4] to determine a mobile
terminal location. These projects are greatly inspired by the RADAR project.

Another way to determine a mobile’s position is trilateration. It determines the posi-
tion of a point, whose coordinates are unknown, by using the distances towards reference
points. The reference points are points whose position is known at each moment. In a WiFi
network, the first step, in order to position a mobile terminal by trilateration, is the distance
computation. Indeed, knowing the distances between the mobile terminal and the reference
points.
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Several methods to solve the trilateration exist. The first one is a geometrical resolution
based on the Pythagore theorem. The second one is based on analytical resolution. As the
computed distance is rarely exact, the analytical and geometrical resolutions raise problems.
The third approach is an iterative one [5], allowing to solve the problems due to distances
miscalculation.

Knowing a point P (WiFi access point), its coordinates and its distance to the mobile
terminal to locate, we consider a circle (respectively a sphere) from the plan (respectively
the space) centered on the point P whose radius equals the distance to the point the coor-
dinates of which are unknown. In figure 1, the 3 circles of respective centers C1, C2 and
C3 admit point M as an intersection. The ray of each circle is the distance between its
center and the mobile terminal. Point M is the position of the mobile terminal obtained by
trilateration. Dotted circles present the realistic situation, when the distances are not exact.
In such cases, the mobile terminal is likely to be located in the shaded area.

C2

C3

1C

M

Figure 1: Trilateration principle.

The iterative approach works as follows (fig. 2.1): a grid of points regularly layed out is
used. For each point, the greatest distance towards the circles’ perimeters is computed. The
position of the mobile terminal is the point for which the greatest distance is the smallest.

Many projects base the distance computation on the relation between the transmitter-
receiver distance and the signal strength measured. The signal strength is the power received
by the receiver. In the sequel, when writing signal strength from a device, we mean the
signal strength corresponding to the signal sent by this device and received by another WiFi
device.

In the SNAP-WPS project [6], measurements of the signal strength from the access
points are carried out. The measurements are carried out at coordinates measured. Thus,
the distances between the measurement points and the access points are known. The data
collected are used in a third degree polynomial regression. The resulting polynomial ex-
pression is used to compute the distances corresponding to each signal strength measured.
According to its authors, the accuracy of the SNAP-WPS is about 1 to 3 meters.

Interlink Networks’ (IN) approach [7] uses an alternative to the Friis equation [8] to
take the indoor obstacles into account. The Friis equation is the following:

PR

PT

= GRGT

(

λ

4πd

)2

where:
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• PR and PT are respectively the signal strength measured at receiver and the signal
strength transmitted by the transmitter,

• GR and GT are the antenna gains of respectively the receiver and the transmitter,

• λ is the wavelength of the radio signal,

• d is the distance between the receiver and the transmitter.

It is achieved by changing the Friis exponent, currently 2, applied on the distance. After
studying several buildings, the authors of this system have decided to use an exponent
equal to 3.5. According to its authors, the IN’s system has an accuracy of about 3 meters.
However, points exist, where the precision is bad. Building topology heterogeneity explain
these points.

In [5], we present the Friis-based Calibrated Model (FBCM) as an improvement of
the Interlink Networks’ approach. In the FBCM, the exponent replacing the quare of the
distance is calibrated. The calibration is achieved by a small set of measurements carried
out at various places in the building. Considering the exponent as the unknown in the
Friis equation, and knowing the distance d and the signal strength PR, a new exponent is
computed for each measurement point. The mean value of the whole set of exponents is
used in the alternative to the Friis equation. The accuracy of the FBCM is about 15 meters.
This result will be discussed later.

The best results, with an error of about 1 meter, are obtained by an hybrid approach.
This is the FBCM and RADAR-based Hybrid Model (FRBHM) [9]. It combines the de-
terministic reference points approach to the FBCM. Thus, the errors of the FBCM due to
the heterogeneity of the topology are reduced by restraining the search field to a small area
thanks to the reference points approach. Then, a Friis exponent is computed within the area.
It fits better the topology and improves the accuracy.

Determining the distances between the mobile terminal and points whose coordinates
are known can also be achieved by using two different waves. For example, the cricket
compass [?] system uses the time difference between the arrival of an ultrasound signal and
a radio signal. Knowing the ultrasound wave speed, computation of D = V × T gives
the distance towards the beacon. By deploying numerous (hundreds) of radio/ultrasound
beacons, the accuracy of trilateration is improved.

Add carpetlan and its results.

2.2 Analysis

From the works exposed above, we can identify two main families: one is based on discrete
approaches whereas the other one is based on continuous approaches. We discuss and
analyse the discrete approaches first and then the continuous ones. For both families, we
expose their positioning systems’ strength and flaws in terms of:

• cost (time/money/computation/memory),

• scalability,

• accuracy,
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• refresh rate.

The whole of these criteria are critical within the scope of the deployment of an indoor
positioning system.

Discrete approaches

The discrete approaches allow to determine a mobile terminal’s position among a set of
positions. In the Active Badge system and the access point-based positioning system, the
positions possible are defined in the set of the infrared emitters’ coordinates in the case
of Active Badge and in the set of the access points coordinates in the case of the access
point-based system. Both these systems are quick to deploy because they do not implie
heavy computation nor lot of data to be stored. However, their accuracy if limited to the
number and distance between either the IR transmitters or the access points. The Active
Badge system can achieve an accuracy of several meters by deploying a great number of
IR devices. The counterpart to the accuracy is the cost in terms of money to buy all the
IR devices and in terms of time in order to set up every IR device. The access point-based
positioning technique is scalable because WiFi AP have an indoor range up to 30 meters.
Several AP can cover an area of thousands of square meters. Moreover, the access points are
also used a network infrastructure and their cost has fallen with the spreading of the WiFi
technology. The IR-based positioning system scales not much because a lot of devices are
required to cover great areas.

The reference points-based positioning systems [1, 2, 3] have a good accuracy with an
about 3-meters error. They are scalable but the time required to setup such a system grows
with the growth of the deployment area. Indeed, the bigger the area, the more reference
points are needed. The expected refresh rate of the position depends on the number of mo-
bile terminals and the software structure of the measurement component. If client-centric,
the measurements are transmitted from the client to the positioning server which returns the
client’s location. It requires only two messages. If infrastructure-centric, the measurements
are performed by the access points after a positioning packet which is broadcasted. The
AP send the measurements to the positioning server, which aggregate the measurements to
compare them to the database of reference points and sends the position back to the client.
It generates more messages and use of the radio channels therefore it is less scalable than
client-centric measurements. The cost in computation and memory is not negligible but
most of the computation is done by the positioning server. Thus, it is not expensive to
deploy such a positioning server and its infrastructure.

The important drawback of reference points-based positioning systems is the time re-
quired to perform the measurements for all reference points. Moreover, is an access point
is moved, removed or added, and if the topology changes (e.g a wall is destroyed in the
building), the offline measurements need to be made again.

Continuous approaches

The continuous positioning systems allow to determine precisely the position of a mobile
terminal based on mathematical computation. In particular, the use of trilateration allows
to compute a mobile terminal’s position in real plan or space.
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Positioning system Avg error (m) Standard deviation (m)
Interlink Networks’ PS 29.38 12.17

SNAP-WPS 22.78 14.07
FBCM 15.86 9.34

RADAR+true distances 4.32 2.23
FRBHM 1.07 0.32

Table 1: Accuracy of the positioning models.

The SNAP-WPS, the IN’s positioning system and the FBCM position a mobile terminal
the same way: when the distance between the APs and the mobile terminal are known, a
trilateration computation is performed and returns the mobile terminal’s position. The IN’s
positioning system is the most scalable and quick to setup. It is just needed to run the
positioning program on the client to position oneself. Therefore, it is fully dynamical, can
be scaled on every WiFi network and is cheap. Memory comsumption and computational
cost are also small because of the use of trilateration. Compared to the IN’s approach, both
the FBCM and SNAP-WPS are longer to setup. They need data to be calibrated before
being used. They are consequently a bit less scalable and a bit more expensive in terms of
time. However, their accuracy is better than that of the IN’s positioning system. Each of
these positioning systems has a fast refresh rate, going down to 0.5 second.

Hybrid approach

The FRBHM combines the FBCM to a RADAR-like approach, requiring an offline data
collection. The combination to the FBCM reduces the amount of data necessary to obtain
the same accuracy. In fact, the FBCM part of the FRBHM makes it more accurate than any
reference points-based positioning system. Indeed, the reference points-based approaches
cannot determine exactly the position of a mobile terminal located at coordinates not in-
cluded in the reference points database. Being an hybrid model, its strength are between
those of the discrete approaches and those of the continuous approaches. However, its
accuracy is the best observed, particularly when dealing with the experiments.

2.3 Experiments

In this section, we present the experimentations carried out on the positioning systems we
have presented presented. The whole of the tests takes place in the same building. For
each point we test, the location computation is performed. The tests are conducted the
following way: the true coordinates and the signal strength measured are provided to the
positioning system. It computes the distances to the access points. The positioning systems
tested are Interlink Networks [7], SNAP-WPS [6], the FBCM, the FRBHM and RADAR
with computation of the true deistances between the reference points.The true coordinates
allow to compute the positioning error. The locations according to each method and the
corresponding errors are displayed.

The calibrated model accuracy is in most cases better than the accuracy of the models
presented by Interlink Networks [7] and SNAP-WPS [6]. The points where the accuracy
of the calibrated model is less than that of the others projects are located behind heavy
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obstacles (ie. a load-bearing wall or in a stairwell). These locations are not part of the
calibration area, which explains the lack of precision.

The absolute error made by the calibrated model on the ground floor is easy to explain.
Indeed, the calibration was carried out on the first floor. The use on the ground floor creates
huge distance miscalculation because the topology is different and the access points are not
relatively located at the same coordinates. But the calibrated model remains competitive
with the other positioning models. A quick overview of the results raises a question. How
can the errors made by the three models be explained ? The errors are great compared to the
building size. We came to the conclusion of topology influence on the positioning system.

It is easy to explain this fact mathematically. Let us consider an access point and two
points of the plan at an equal distance d of the access point. A point has a line of sight with
the access point. The other point is hidden by a wall. On each point, the signal strength
measured or theoretical is different. It shows that the relation between the distance and the
signal strength is not bijective. Therefore, this relation does not admit a reciprocal relation.
The reciprocal expressions of the Friis equation and its alternatives are approximate com-
pared to the real conditions. Therefore, it can be concluded that, the more heterogenous the
topology, the more inaccurate using a reciprocal expression based on the Friis equation is.

3 Mobility Prediction

3.1 State of the art

While not much research has been done in th field of mobility prediction, much have been
done within the scope of web page prefetching in order to improve the WWW latency. Suc
works are interesting because they can be applied to mobility prediction. In fact, formal
models such as Markov Models (MM) can be used to model many stochastic data, from
users surfing the web to mobile terminals moving from cell to cell.

In this section, we present the works related to prediction. As all the works are not ini-
tially meant to be applied to mobility prediction, we will call this comportemantal predic-
tion. The related works are divided in three parts: the first one is the short-term prediction,
which is not really our concern within the scope of mobile multimedia and handoff antici-
pation. But it is worth being mentionned, in particular concerning outdoor mobile terminals
and ad hoc routing. The second part is the middle term prediction, which is of great interest
in the field of handoff anticipation. The third and last part is the long term, considering
people’s strong habits, like going home each evening.

Short-term

The mobility prediction can be achieved by trajectory computation [10], allowing to predict
short-term movements based on the speed vector of an object. As WiFi positioning is not
sufficiently robust, various methods allow to smooth the mobile’s trajectory, such as Kalman
filters [11] and double exponential smoothing [12]. However, all of these methods require
fine-grained positioning to be used. Therefore, they are mostly suited to virtual reality
devices than to WiFi mobile positioning.
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In [13], the authors present a hierarchical mobility model. The local mobility model
uses trajectory computation to make short-term prediction whereas the global mobility
model considers user mobility patterns (UMP) and makes middle-term prediction by match-
ing the UMP with the user’s actual path (UAP). Merging those models allows to determine
next cell crossing with accuracy and increases the matching of the UAP with the UMPs.

Middle-term

Sarukkai [?] proposes to model users path by Markov chains (Markov Model). He foresees
four goals with users’ path modeling:

• generate a surfing tour on a web site,

• predict pages accesses in order to prefetch the pages and improve the WWW latency,

• advice some links based upon others users’ habits comparison with the current user’s
surfing path,

• identify the hubs.

The second item is interesting within the scope of mobility prediction. Many models pro-
posed in the field of web page prefetching can be applied to mobility prediction. The
MM described by Sarukkai is defined as (S, A, λ) where S is the space of states (URL,
HTTP request or action such as email, database update, etc.), A is the transition probabil-
ities matrix and λ is the initial state distribution. Given n states, the matrix A is an n × n

matrix. The learning of the model is based upon log files which are processed to iden-
tify users’ sessions. Then, counting the number of incoming transitions and the number
of occurrences of each outgoing transition allows to determine the transition probability
for each one. Two methods use the MM to predict next page access: the first consid-
ers which page is being visited and considers the most probable page in the MM as be-
ing the next page. The second method tries to use a longer path history by computing
T S(t) = a0I(t−1)A+a1I(t−2)A2 + ...+aj−1I(t−j)Aj + ...+ak−1I(t−k)Ak where:

• A is the transition probabilities matrix,

• ai−1 is the weigth of the ith history state,
∑k−1

l=0 al = 1,

• I(t − i) is the state vector of the history path at time t − i.

The vector S(t) gives the probabilities for each state to be the next state in the user’s surfing
path. The experiments carried out on the MM achieve an accuracy between 60 and 70%.
Although it is an acceptable accuracy, considering longer path history can improve the
overall accuracy of a MM-based predictive model.

Pirolli et al. [?] extend the MM to model longer users’ paths. It is achived by consid-
ering various lengths of N-grams. An N-gram is a t-uple (X1, X2, ..., XN ) with Xi being
a web page. The N-grams extracted from the log files allow to build a MM whose states
are labeled with k = N − 1 pages visited by the user. The N th page of the N-gram is
used to train the model. Such a MM is called a Kth-order Markov Model (KMM). In [14],
Pitkow et al. give an extension of the KMM. It is called the All Kth-order Markov Model
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(AKMM). It consists in building the KMM from 1st-order to kth order. Then, the next state
is predicted by the highest KMM in which the current state exists. The higher order a MM,
the less chances to match a state we have. Thus, the AKMM addresses this problem while
still allowing predictions with the highest possible degree of history. Although the AKMM
have great predictive power, they consume much memory to be built and stored. There-
fore, several methods intend to reduce the size of the AKMM while not losing too much
predictive accuracy.

In [14], J. Pitkow et al. describe how to mine the longest repeating sequences (LRS)
in users paths. The method consists in identifying in users path the subsequences which
follow these criteria:

• subsequences are composed of a set of consecutive items,

• they must be repeated T times, with T typically equal to 1,

• at least once, the LRS is the longest repeating (ie. it is not part of a longest LRS).

Mining the LRS allows to significantly reduce the amount of data before building the
AKMM required to predict pages visits while not losing accuracy. In fact, accuracy
marginally decreases but it is neglectable compared to the space gain.

In [15], the authors extend the use of the All Kth-order MM by pruning some states to
reduce the size of the automata. Their model’s name is Selective Markov Model (SMM).
The states are pruned when they do not carry much sense. A state has not much sense either
when occuring not frequently or when having few difference between the probabilities on
its outgoing transitions or when having a bad error rate during the validation step. The
SMM is an approach similar to the LRS one. It allows to drastically reduce the amount of
data while staying close to the full MM’s accuracy.

An approach close to the MM one is based on Hypertext Probabilistic Grammar (HPG)
[?]. In a HPG, pages are non-terminal symbols, states S and F (beginning and ending of a
page sequence) are terminal symbols and the production rules are links between pages. The
transition probabilities are computed following the same formula than in a MM excepted
for the transitions from S to any state. In the initial state distribution, a parameter α. α

parameters the weight given to a page occurrence as the first of a sequence compared to the
weight given to pages anywhere in a sequence. The probability to start at state Ei (ie. going
from S to Ei) is computed as follows: π(Ei) = αOcc(Ei)

NT
+ (1−α)Start(Ei)

Nseq
where

• π(Ei) is the probability to go from state S to state Ei,

• Occ(Ei) are the occurrences of state Ei within all the sequences,

• NT is the number of transitions in all the sequences,

• Start(Ei) are the occurrences of state Ei being the first state of a sequence,

• Nseq is the number of sequences in the log files.

Following this computation, a state never being the first in the log files still has a proba-
bility to be the first in a further sequence. The first formal representation of the HPG is an
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automata. In [?], the authors extend the HPG by modeling it with MM. Then, the MM is
used to compute patterns. Patterns are subsequences whose probability to occur is greater
than a threshold λ = θδ where θ is the support threshold and δ is the confidence thresh-
old. According to the threshold, a tree of all the patterns is built. This method is useful to
determine frequently used patterns and can be used as a base to the mobility prediction by
keeping only data that are frequent enough to achieve an accurate prediction.

In [?], the accuracy between the 1st-order MM and the 2nd-order MM is compared in
order to decide whether or not a state is cloned to improve the 1st-order MM’s accuracy.
It aims at improving the 1st-order MM’s accuracy while not using as much space as a All
2nd-order MM. The decision to clone a state is bound to the classification of a state as being
inaccurate. Let pi,k,j be the probability of state j following states i then k. Let pk,j be
the probability of state j following state k. Let O be the number of outgoing transitions
from state x and I be the number of incoming transitions to state x. If ∀ 1¡=i¡=I, 1¡=o¡=O,
−γ < pi,x,o − px,o < γ, the state is accurate. If not, the state is cloned. As a result, the
accuracy of the 1st-order MM is improved (slightly lower than the 2nd-order MM) and the
number of states in the model is lower than the number of states in the 2nd-order MM.

Hidden Markov Model (HMM) [16] can be used to determine the mobile’s future po-
sition after a learning phase. The tutorial [17] of L. R. Rabiner defines an HMM as being
composed of

• a set of physical states,

• a set of observation symbols to be matched with the set of physical states,

• A, the state transition probability distribution,

• B, the observation symbol probability distribution whitch matches the observation
symbols with the physical states,

• π, the initial state distribution.

The compact notation for the HMM is λ = (A, B, π). The problem to be solved with the
HMM and when predicting the next movement of a mobile terminal is: given the observa-
tion sequence O1O2...OT , with Oi in the set of observation symbols, and a model λ, how
do we select a corresponding state sequence q1q2...qT , with qi in the set of physical states,
which is optimal according to the current problem’s criteria ? Using a Viterbi algorithm,
the problem can be solved. The use of the HMM takes into account the errors in the obser-
vation of the mobile terminals’ location. Indeed, in most of the indoor positioning systems,
the accuracy is such as the observation can not be considered as real. The observations are
matched against the reality according to a stochastic process. In such case, the physical
states are the real locations of the mobile terminals and the observation symbols are the co-
ordinates computed by the positioning system. The probabilities of the transitions from one
state to another compose the second stochastic process. The HMM has predictive power
but does not take into account path history longer than 1.

The KMM and AKMM can be extended to the mobility prediction. Instead of prefetch-
ing the most probable state, several states can be prefetched. To trigger a prefetch, the
K-past and K-to-1 past models [18] use a prefetch threshold. K-past is a KMM and K-to-
1 past is an AKMM. Considering the actual state, the K-past triggers a prefetch for each



Create Pervasive Multimedia Application using Mobility Awareness 11

state of the model having a probability greater or equal to the threshold. The K-to-1 past
works the same way, but similarly to the AKMM, the prediction is made by the highest
order model containing the current state. In some cases, increasing the K-to-1 past’s order
can decrease the accuracy of the model. This will be discussed in details in section 3.2. It
is therefore necessary to address this problem. The K-to-1 past∗ model [18] creates a set
composed of the union of the results for each k-past with 1¡=k¡=K. It improves the accuracy
but increases the cost of the prefetch by triggering a handoff in more cells.

Long-term

Something ?

3.2 Analysis

The base analysis of the state of tha art being mage, there are some points which require
to be underlined. First, why does someone want to take into account longer path history
? An example can easely prove this assertion. Given states A, B, C, D, E, F, G, H and
users’ paths ABCD, ABCE and EBCD, if we observe a current user’s path beginning
with ABC, what should be the next state ? The 1st and 2nd orders MM will compute a
33% probability to go to state E and a 67% probability to go to state D. According to the
users’ paths, if someone follows states ABC, there is a 50% probability to go to state D

and a 50% probability to go to state E, which is given by the 3rd order MM.
On the other hand, long path history is not always more accurate and can lead to pre-

diction errors. In the case of the k-to-1 past model, learning with the users’ paths ABCD,
ABCE, ABCF and HBCG, will give the 1st to 3rd orders MM exposed in figure 2.

Let the threshold be 0.2. Considering the new peregrination, ABC, then G (to be
predicted by the model). The prediction algorithm begins trying to find potential transitions
in the 3-rd MM. Here, a 3rd order state ABC exists. It has three outgoing transitions, each
occuring with a 0.33 probability. The algorithm returns the three target states: BCD, BCE

and BCF , meaning to trigger a handoff in states D, E and F . The mobile going in G, the
prediction is wrong. The prediction with 2nd order MM would return states D, E, F and
G, which is more correct.

That is why, although requiring more cells to be prepared for a handoff, the K-to-1 past∗

model is more efficient than the K-past and K-to-1 past ones.

3.3 Experiments

In this section, experiments of the K-past, K-to-1 past and K-to-1 past∗ models are pre-
sented. Tests were carried out on data sets provided by the Institut fur Pervasive Com-
puting1. A first data set is the Augsburg Indoor Location Tracking Benchmarks, built with
data from 4 persons clicking their location in a building each time they change their room.
Each entry of the log includes the room and the unix time when the user entered the room.
The second data set is the Nokia Context Data, built from GSM data, including unix times
and cell location.

1http://www.pervasive.jku.at/Research/Context Database/index.php
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  endif
endif
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algorithm

Figure 2: An All-3-th Markov Model Sample.

In the Augsburg Location Tracking, there are two series of log files. The * fall were
built during the autumn, and the * summer were built during the summer. The prefix a, b,
c and d identify the 4 users. Table 2 presents the test of the 1st order MM on the Augsburg
Location Tracking data set. It consists in separated tests for each file in the package and one
test on the overall. The overall test is carried out by concatenating all the files together. For
each test, the training is made considering the first 75% peregrinations of the log file. The
remaining 25% are used to test the training. The results show two files whose accuracy is
less or equal to 50%. In both cases, it is explained by the size of the log file, which contains
few peregrinations. Thus, the training is not exhaustive enough, leading the model to make
wrong predictions. Globally, the results are good because the training is made on the same
user’s profile than the test. It proves the influence of the context within the scope of the
mobility prediction. The lower accuracy observed in the overall test is logical. Indeed, the
concatenation of the files into another one involves that the system uses the 4 user’s fall
profiles to train before confronting the resulting model to the user’s movements in summer.
As the users may have different habits over different periods, the accuracy is lower.

Tables 3 and table 4 expose the K-past’s accuracy on the Nokia Context Data and the
Augsburg Location Tracking. Several conclusions are drawn from the results:

• the lower the probability threshold, the better the accuracy is. Indeed, decreasing
the threshold increases the number of states selected for the handoff, increasing the
success probability,
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Log file (learning/validation percent) 1-past
a fall (75/25) 0.7841
b fall (75/25) 0.8131
c fall (75/25) 0.6592
d fall (75/25) 0.7127
a summer (75/25) 0.5000
b summer (75/25) 0.7857
c summer (75/25) 0.7375
d summer (75/25) 0.3333
Overall a fall to c fall (100/0) 0.6470

d fall (94/6), * summer (0/100)

Table 2: Mobility prediction accuracy, 1st order Markov Model, Augsburg files.

Threshold 1-past 2-past 3-past 4-past
1.0 0.0694 0.2729 0.2705 0.2077
0.9 0.1632 0.3551 0.3430 0.2754
0.8 0.2882 0.4589 0.4324 0.3527
0.7 0.2899 0.5459 0.4831 0.3792
0.6 0.3368 0.5676 0.4976 0.3816
0.5 0.5191 0.6618 0.5507 0.4082
0.4 0.6458 0.6667 0.5556 0.4082
0.3 0.7396 0.7198 0.5749 0.4251
0.2 0.7951 0.7560 0.5942 0.4251
0.1 0.9080 0.8213 0.6135 0.4324
0.0 0.9583 0.8430 0.6256 0.4444

Table 3: K-past Mobility prediction accuracy, Nokia Context Data.

• 1-past accuracy is better than the other’s ones below a given threshold. As the 1-past
training gives the most possible outgoing transitions from one state, the transitions
have less probabilities to occur than the ones in the 2+ past models: the 1-past model
has therefore a lower accuracy with high thresholds but becomes the best with low
thresholds,

• for K > 1, the K-past model’s accuracy decreases when K increases. Indeed, in-
creasing K increases the path size stored in each state of a model. The longer the
past, the lower is the probability to observe the same path in further peregrinations,
especially when not having much training data, thus reducing the overall accuracy of
the model. There could be some cases whose precision would grow with the increase
of the automaton’s degree, for example in an environment which users always follow
long paths crossing from time to time,

• for several thresholds, the accuracy remains stable and increases suddenly when low-
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Threshold 1-past 2-past 3-past 4-past 10-past
1.0 0.1719 0.1255 0.2937 0.2862 0.0688
0.9 0.4758 0.4814 0.4526 0.4359 0.1078
0.8 0.4879 0.4814 0.4563 0.4638 0.1143
0.7 0.4879 0.4814 0.4563 0.4926 0.1217
0.6 0.4879 0.4814 0.4563 0.5344 0.1236
0.5 0.4879 0.4851 0.4600 0.5530 0.1320
0.4 0.4879 0.5279 0.5074 0.5967 0.1366
0.3 0.4879 0.6190 0.5864 0.6478 0.1561
0.2 0.6097 0.6887 0.6571 0.7026 0.1757
0.1 0.8457 0.8429 0.8123 0.7667 0.1914
0.0 0.9898 0.9665 0.9210 0.8411 0.1961

Table 4: K-past Mobility prediction accuracy, Augsburg Location Tracking.

ering the threshold. It is due to transitions frequently taken. Such a transition has
a high probability to occur, whereas the other have a really small probability. This
explains that the success of the prediction suddenly grows for a low threshold, while
it chosed only one possible state for higher thresholds. Such cases occur when users
have strong habits in their movements, such as going to one’s own office.

The K-past model’s results are interesting: the lowering of the accuracy we observe when
taking into account longer paths is not the goal of a mobility prediction model. That is why
other models where tested.

In table 5, the results of the K-to-1 past model on the Nokia Context Data are given.
Increasing the K-to-1 past degree does not always increase the accuracy. Given the expla-
nation exposed in section 3.2, it is not really surprising. Finally, we observe that the K-to-1
past model has better accuracy than the K-past one. This obsevation is obviously logical as
the K-to-1 past model selects at least the same transitions than the K-past model.

Threshold 1-past 2-past 2-to-1 past 3-past 3-to-1 past
1.0 0.0694 0.2729 0.2923 0.2705 0.3357
0.9 0.1632 0.3551 0.3744 0.3430 0.4082
0.8 0.2882 0.4589 0.4855 0.4324 0.5097
0.7 0.2899 0.5459 0.5725 0.4831 0.5652
0.6 0.3368 0.5676 0.5894 0.4976 0.5797
0.5 0.5191 0.6618 0.7029 0.5507 0.6667
0.4 0.6458 0.6667 0.7150 0.5556 0.6715
0.3 0.7396 0.7198 0.7681 0.5749 0.7005
0.2 0.7951 0.7560 0.8092 0.5942 0.7303
0.1 0.9080 0.8213 0.8816 0.6135 0.7778
0.0 0.9583 0.8430 0.9203 0.6256 0.7923

Table 5: Mobility prediction accuracy with K-to-1 past, Nokia Context Data.
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The last test presented concerns the K-to-1 past∗. This model returns the union of the
selections from each K-past model’s degree. Tables 6 and 7 respectively show the results
with the Nokia Context Data and the Augsburg Location Tracking data set. It underlines
the increase of the accuracy when increasing the K-to-1 past∗ model’s order. The union of
the predictions made by the kMM with k going from 1 to K increases the accuracy of the
model of approximately 14 % for the 3-to-1 past∗.

Threshold 1-past 2-to-1 past 3-to-1 past 12-to-1 past
1.0 0.0694 0.2483 0.3142 0.5017
0.9 0.1632 0.3663 0.4080 0.5590
0.8 0.2882 0.5243 0.5503 0.6545
0.7 0.2899 0.5660 0.6042 0.6875
0.6 0.3368 0.6441 0.6632 0.7222
0.5 0.5191 0.7066 0.7274 0.7882
0.4 0.6458 0.7535 0.7830 0.8229
0.3 0.7396 0.8299 0.8490 0.8715
0.2 0.7951 0.8628 0.8802 0.8906
0.1 0.9080 0.9288 0.9288 0.9358
0.0 0.9583 0.9583 0.9583 0.9583

Table 6: Mobility prediction accuracy with K-to-1 past∗, Nokia Context Data.

Threshold 1-past 2-to-1 past 3-to-1 past
1.0 0.1719 0.1766 0.3615
0.9 0.4758 0.4879 0.4879
0.8 0.4879 0.4879 0.4879
0.7 0.4879 0.4879 0.4879
0.6 0.4879 0.4879 0.4879
0.5 0.4879 0.4916 0.4916
0.4 0.4879 0.5344 0.5409
0.3 0.4879 0.6255 0.6255
0.2 0.6097 0.7054 0.7082
0.1 0.8457 0.8866 0.8931
0.0 0.9898 0.9898 0.9898

Table 7: Mobility prediction accuracy with K-to-1 past∗, Augsburg Location Tracking.

Two main phenomena are also noticeable: accuracy is best for a threshold equal to zero.
When the threshold equals zero, the prediction is done by selecting every outgoing transition
in each order. Another interesting observation is that the accuracy when the threshold equals
zero is the same for every order of the K-to-1 past∗. In fact, the first degree model contains
every possible transition from one state to another one. Thus, each transition of a higher
order MM exists in the 1st order MM. As the higher degrees models do not contain every
transition in the 1st order MM, their probabilities are higher. When the threshold equals
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zero, the 1st order MM makes a prediction as accurate as the higher orders models’ one.
Due to the same properties, the accuracy increases better for a high threshold. When the
threshold is 1, the first degree model has a very poor accuracy whereas the increase by using
the second degree and third degree models is important.

4 Interactions with middleware ensuring Multimedia commu-
nication

continuity + context : - Multimedia communications in parallel with services (localiza-
tion, prediction of mobility or services, ...) - multi-dimensional sensitiveness : positioning,
mobility, network, profile user, adaptive contents + Typical infrastructure addressing the
continuity of mobility multimedia services - mixer : adaptive streaming QoS, multi-flow
switches, ... - caches : abstraction layer, performing a match between mobile client po-
sitioning and contents of some physical network nodes - handover : how to install virtual
continuity over station based networks - congestion management, low-consumption man-
agement, ... + Interfacing various middleware to achieve simultaneously localization and
continuity - examples of predictive cache management and predictive horizontal handoff -
experimentations + future trends ad hoc routing, etc.

5 experiments

+ Experimental studies + New arriving multimedia applications - characteristics : wireless,
heterogeneous topology, lite-infrastructure, concurrent communications and services, rich
medias, - typical applications rich and geo-based multimedia information systems

6 Conclusion and future trends

The conclusion
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